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Abstract—State-of-the-art Remote Direct Memory Access
(RDMA) engines pin communication buffers, complicating the
programming model, limiting the memory utilization, and man-
dating a separate memory translation subsystem spanning the
network interface card and the OS. In this paper, we introduce
PART, a page fault handling mechanism suitable for emerging
nodes that integrate the NI with the main processor. PART
does not need to pin pages, thus any process buffer can be
used for communication, and resolves occasional page-faults
dynamically, when the network accesses the memory, by reusing
the RDMA transport. Additionally, PART leverages the I/O
Memory Management Unit (IOMMU) which is next to the
processor in order to translate virtual to physical addresses, thus
reducing cost and complexity. We implement and evaluate PART
in a cluster of 16 nodes and 64 ARM cores. We evaluate the
performance of transfers for varying page fault frequency, and
examine optimizations that proactively page-in all pages upon the
first page fault or ahead of the transfer, providing useful insights
that can be used to optimize runtimes. Our results show that
PART completes one-page transfers with a minor page-fault at
the destination in approximately 38 usecs, while the slowdown on
1MB transfers that experience faults in all pages is as little as 2.6x
compared to the no-page-fault case. Page faults are expected to be
rare in HPC setups: the performance of LAMMPS in our cluster
is virtually unaffected when pages are handled dynamically using
PART.

Index Terms—page faults, RDMA, IOMMU, MPI, low-power
ARM processors

I. INTRODUCTION

Modern computing systems strive to eliminate the use of
the kernel path in processor communication [1]-[5]. Kernel
involvement induces high overheads due to costly system
calls and unwanted memory copies during a transfer. As an
alternative, user-level initiation of Remote Direct Memory
Access (RDMA) completely eliminates these overheads, by
implementing a transport in hardware, and allowing users
to bypass the operating system. User-level RDMA mandates
the use of virtual addresses when specifying the source and
destination memory locations. These virtual addresses must be
safely translated to physical by the RDMA subsystem in order
to fetch and write data to memory. Common RDMA tech-
nologies copy page mappings into Network Interface Cards
(NICs), which become responsible for address translation.
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These NICs cannot tolerate page faults, thus, in order to
circumvent them, the Operating System (OS) pins the memory
pages that correspond to communication buffers [6]. Pinning
is undesirable for the following reasons:

1) Extensive use of pinning can hinder the memory utiliza-
tion [7] and is not compatible with some optimizations
of the OS (e.g. Transparent Huge Pages).

2) Pinning and unpinning pages requires system calls that
introduce overheads.

3) The applications are responsible to pin and unpin their
working set of communication buffers, rendering pro-
gramming more difficult.

Our goal in this paper is to enable scalable RDMA without
the overheads incurred by memory page pinning. The main
observation is that, in modern well-designed systems, page
swapping and thus also page faults will be rare, even if we do
not pin the communication buffers. This holds especially true
for optimized HPC applications that keep their working set in
main memory.

Following these insights, we present PART, a system that
does not pin the communication buffers. In PART, we treat
occasional page-faults similarly with other transmission errors
that may occur in a transfer. In a nutshell, we first resolve the
page-fault, locally, at the node that it occurs, and subsequently
we re-transmit the failing pages of the RDMA transfer. We
implement PART in a cluster of low-power ARM processors.
For address translation, PART utilizes the existing IOMMU s,
thus obviating the cost and overheads of translation-capable
NICs. Our contributions in this paper are the following:

o We propose and evaluate PART, a system that handles the
page-faults during RDMA by retransmitting failed pages,
thus removing the need to pin buffers in memory.

o We assume that the NI is closely coupled with the pro-
cessor, and we re-use the IOMMU for address translation
instead of relying on specialized NICs.

o We implement both the system software and hardware
components of PART in small cluster of interconnected
ARM processors.

e We run LAMMPS on 16 nodes and 64 cores. Our results
show that PART performs virtually as well as a system
that avoids network page-faults. In microbenchmarks, we
vary the frequency of page faults and discuss various
optimizations and trade-offs.
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Fig. 1: Pinning in traditional network interface cards
(NICs). Pages are pinned prior to the transfer, and the
mappings are copied in a separate memory subsystem that
spans the NIC and main memory.
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Fig. 2: PART’s general architecture. In PART, we do
not pin pages, and memory translations go through the
IOMMU, and the page tables (PT) of the user processes.
Page-faults are handled by retransmitting failed pages
after a time-out, or explicit retransmit messages.

The remainder of this paper is organized as follows. In
Section II, we present the motivation for this work, related
work, and outline PART. Next, in Section III, we describe the
processor and the network interface that we use to implement
PART. Section IV describes our page-fault handling mecha-
nism, and Section V presents our results. Finally, we conclude
with Section VI

II. MOTIVATION AND OVERALL APPROACH

Common RDMA technologies register the address map-
pings of pages that participate to communication in special
Memory Translation Tables (MTTs) in host memory. To keep
the mappings of registered pages coherent with changes hap-
pening in the page table maintained by the OS, these pages are
pinned so that their physical locations (frames) do not change
while the network accesses them.

This approach has significant implications. First, registering
or de-registering a page is a privileged task, involving costly
system calls. An early study [8] measured the pin-down
overhead for Myrinet networks as (40 x 7 - n) psecs, where
n is the number of pages. Later, in [9], the total cost of
registering a page was found approximately 30 psecs; this
cost stays constant for buffers up to 128KB, and increases
proportionally with the buffer size afterwards. In our newer
ARM-based platform, we measured the latency of pinning a
page, and we found it is approximately 6 psecs.

Applications that use RDMA for improved performance
wish to hide the registration latency. Special memory man-
agement techniques for communication buffers have been

proposed for that purpose. For instance, lazy de-registration in
[8] defers releasing pages anticipating future re-use. In [6], the
authors propose to copy small messages in pre-pinned buffers,
whereas other studies propose to register the entire physical
address space [10]. Finally, large page sizes and modern NIC
optimizations for contiguous physical memory may help even
further [11].

Modern NICs deploy large MTT caches in order to serve
many concurrent communication buffers. This increases their
cost and area footprint, while not necessarily making them
capable to capture the working set of the most demanding
workloads. The authors in [12] report that the cache of the
MTT in the NIC of their study has at most 2K entries. For
4KB pages, this cache can keep translations for 8MB buffers.
Cache misses are served by the host MTT that maintains the
translations of all pages. This operation takes time, since it
goes through the PCle (300-500 nsecs one-way latency in
unloaded systems). In high-speed networks, this dragging path
can induce a “slow receiver syndrome”, which can cause and
spread congestion throughout the network.

Most of the aforementioned solutions hinder the resource
management, scalability and latency benefits of “Demand
Paging”, because communication pages have to be resident in
memory prior to actual access. Furthermore, these solutions
typically maintain a secondary memory translation subsystem
for communication buffers, which increases cost and complex-
ity.

A previous work, independent of ours, resolves network
page faults dynamically [13]. The overhead of that mechanism
for 4KB messages is approximately 220 psecs, whereas in
PART the corresponding overhead is approximately 38 usecs.
In [13], the authors comment that 90% of this cost is due
to slow NIC firmware. Additionally, in their work they use
special translation tables in the NIC and the host memory,
whereas PART uses the existing [IOMMU and the process page
table. Finally, PART resolves all page faults by re-using the
existing RDMA transport and utilizes optimizations such as
proactively paging-in all pages of the RDMA transfer.

In this paper, we propose and evaluate PART, a mechanism
suitable for next-generation systems, featuring a network in-
terface tightly coupled with the main processor and the host
memory. This arrangement bypasses the overheads of PCle,
thus enabling faster access between the network interface (NI)
and the host memory as well as between the NI and the
processor. In these emerging architectures that integrate the
NI in the same chip or package with the main processor, it is
important to re-use existing blocks.

PART does not pin pages before using them for RDMA.
Effectively, PART can use any virtual address for communi-
cation, but because buffers are not pinned, a network access
may generate a page-fault; when this happens, a kernel module
in PART is invoked, which resolves the page fault, and re-
uses the RDMA transport to replay the failing segment of the
transfer, as shown in Figure 2.

PART re-uses the IOMMU that exists in modern servers for
network address translation purposes, instead of deploying a



separate memory-management system that spans the NI and
the OS, as is the case for current NICs, shown in Figurel.

In our ARM-based testbed, the latency of a small transfer
incurring a network page fault is approximately 38 usecs, as
detailed in Section V. This includes (and is dominated by) the
time needed to wake up from an asynchronous page-fault and
to resolve the page-fault. Even though the page-fault latency
may exceed the overhead of page pinning, page faults are
rare for well-designed HPC applications that fit their working
set in memory in order to avoid random latencies and achieve
good synchronization, as well as for in-memory data analytics
that maintain and process data in memory.

Overall, the memory management proposed in PART is
simpler, as user programs do not have to explicitly manage
a scarce set of communication buffers; instead, any region in
the program’s virtual memory can be used for remote memory
operations. In addition, the hardware of the network inter-
face is much more efficient, as we re-purpose the IOMMU,
which already exists in modern systems, instead of spending
resources on an extra memory management subsystem, as is
the case with modern NICs.

III. NETWORK INTERFACE RE-USING ARM’s SMMU

In this section, we describe the ARM-based platform that
we used to evaluate PART. The basic block is a Zynqg MPSoC
from Xilinx [14], four (4) ARMvS low-power cores (AS53),
16GByte DDR4, a rich set of hardware IPs, and reconfigurable
logic, as shown in Figure 3. The ARM cores inside the MPSoC
are fully coherent with each other, whereas the programmable
logic can access memory through 10-coherent ports.

A. Lean RDMA transport

A custom network interface (NI) inside the FPGA part of the
MPSoC implements a packet-based network protocol for inter-
chip communication. The NI is highly virtualized, offering
multiple channels that can be allocated to concurrent user-
level processes. Processes initiate RDMA (write and read)
transfers using virtual addresses, bypassing completely the OS.
In our measurements, the round-trip time between an ARM
processor and the NI is between 120 and 150 nsecs, which
corresponds to the latency of a processor load command that
reads a register inside the Programmable Logic. The NI offers
a reliable transport, based on end-to-end positive and negative
acknowledgments and retransmissions, allowing transfers to
complete without any software or kernel overhead.

Part of the RDMA Engine is the RS Real-Time co-processor
available in the Zynq MPSoC. Its main task is to segment
messages into 16KB blocks (or transactions) and to issue
blocks to the hardware. The hardware engine further splits
16 KB transactions into 256 Byte packets. At the source, it
reads packets’ payload from host memory starting from the
source virtual address (VA); at the destination, the RDMA
Engine writes the packets’ payload to host memory starting
from the destination VA. For each correctly completed block, a
positive ACK is generated, which is routed to the co-processor
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Fig. 3: PART’s building blocks: (left) Quad-FPGA Daugh-
ter Board (QFDB) with 4 Zynq MPSoCs, described in
Section V; (right) Each MPSoC provides 4 ARMvS8 cores,
16GB DDR4 (connected with a parallel bus at 160 Gb/s), an
IOMMU, and a custom RDMA transport (NI) implemented
in the FPGA.

at the source. Missing ACKSs trigger time-outs and block-level
retransmissions.

Accesses to host memory coming from the NI pass through
the ARM’s IOMMU (SMMU), which translates virtual to
physical addresses, as described in the next subsection. Next,
the physical addresses are forwarded to ARM’s Cache Co-
herent Interconnect (CCI) to fetch (on read) or invalidate (on
write) cached data inside the Level-1 and Level-2 caches. Ef-
fectively, we do not need to flush the caches before triggering
RDMA operations. The hardware end-to-end latency is below
1 psec; the RS co-processor adds approximately 3 usecs.

B. ARM’s System Memory Management Unit

Instead of using a special NIC, PART makes use of the Sys-
tem Memory Management Unit (SMMU) [14] that is mainly
responsible to manage the memory requests from I/O devices
to the local memory of the system. The SMMU is defined
by ARM, but, operation-wise, is similar to other IOMMUs.
Virtual addresses are used in RDMA for virtualization and
protection purposes. When issuing RDMA operations, the
users specify the source and the destination node IDs (22-
bits each) as well as the source and the destination VAs, 42-
bits each. In order to identify the targeted process at end-
points, and provide protection, we deploy a special 16-bit
protection domain identifier (PDID) on the RDMA channels
that are allocated to the processes by the OS. The NI uses
these {PDID, VA} tuples to access the memory of user-level
processes. The PDID is used to uniquely match incoming
memory transactions to a particular structure of the SMMU,
called context bank. Each context bank is associated with the
page table of a process.

In addition, the SMMU includes Translation Lookaside
Buffers (TLBs) that keep the most recent address translations,
without needing to perform a page table walk. The SMMU
embeds two levels of TLBs. The Level-1 TLB of the SMMU
used in this work is a fully associative cache and can support
up to 128 entries, while the Level-2 TLB is a 4-way asso-
ciative cache and can support up to 2K entries, thus offering
translation capabilities comparable with that of modern NICs.
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Fig. 4: Memory translations through ARM’s SMMU sub-
system

In Figure 4 we see the translation of an incoming transaction
({PDID, VA} tuple) passing through the SMMU. When a
mapping is not found in the TLBs, a Page-Table Walk (PTW)
is triggered on the process page table, which is maintained in
DRAM. A PTW performs a number of memory accesses that
can degrade the performance of a system.

IV. PART: HANDLING RDMA PAGE FAULTS

The most common case for a page fault to occur during an
RDMA is at the destination buffer, because the source buffer
(containing the transfer data) will be “touched” prior to the
transfer. On the other hand, a user process may allocate a
(receive) buffer which is uninitialized when the RDMA starts
writing data into it. In this paper, we present how PART treats
such minor page-faults in the destination buffer. Nevertheless,
PART can also handle page faults at the source, which are
possible when internal optimizations (such as Transparent
Huge Pages) in Linux are enabled.
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Fig. 5: General flow of PART

Figure 5 depicts the general flow of our mechanism. Each
remote memory access to a computing node reaches first
the (remote) RDMA Engine, then passes through the remote
SMMU, and finally, if allowed, accesses the remote memory.
Each page fault from a memory transaction that passes through
SMMU invokes a particular fault handler. This fault handler
catches all the faults generated by accesses from the SMMU
and is defined in the ARM SMMU Linux driver (version
4.9) [15]. Each context bank, which corresponds to the page
table of a process, has its own set of fault registers, that
provide information about the cause of the fault, including
the virtual address that triggered it. The original version of

this handler only catches such asynchronous page faults' that
were triggered by an unsuccessful SMMU page table walk, but
does not provide support to handle them. We have enriched
the functionality of this handler in order to resolve page faults.

Precisely, the first task of handling page faults is to make
sure that the failed page is brought into the main memory,
as long as it is valid, so that the transfer will succeed after
the retransmission. One way that this can be accomplished
is to have a user-space thread, linked with the user-process
executable, be informed about the fault, so it touches (i.e.
reading and then writing the first byte), the failed page.
The same can be accomplished in kernel-space, utilizing the
get_user_pages () and put_page () methods of the
kernel. The first essentially pins-in a range of pages, thus
bringing them also in memory, and the latter unpins them.
In PART, we opted for the kernel-based solution, because it
avoids the utmost context switches from kernel space to user
space, and, also, because it enables to proactively page-in all
pages, an optimization that we discuss next.

Once we encounter a page fault on an RDMA transfer,
PART can proactively page-in more than one page of the
transfer. In Section V, we evaluate the performance of Page-
in 1-Pg, which pages in only the failed page, Page-in 4-
Pgs, which proactively pages-in all (4) pages in a block, and,
finally, Page-in All-Pgs which pages-in all pages of an RDMA
transfer, starting from the failed one. This requires that the
mechanism knows the RDMA transfer size. On the other hand,
get_user_pages() allows us to touch-ahead pages even when
this information is not available.

When a page fault occurs, either at the source or at
destination, the source DMA Engine will not receive an
acknowledgment, and will retransmit (in hardware) the failed
block after a time-out. The time-out of an RDMA Engine
cannot be set at a meager value, because this can induce
early time-outs and duplicates. Thus, in a network with a
few microseconds end-to-end latency, the time-out may be
set at 100 psecs or more. Retransmission caused by failing
packet CRC can be expedited using negative acknowledgments
(NACKSs). However, we cannot send such a NACK immedi-
ately when a page fault occurs, because the retransmission
may arrive before we have paged-in the missing page(s).
Instead, we send an Explicit Retransmission Request (ERR)
(the equivalent of NACK), after the page-in task has completed
its work. In our implementation, we selectively retransmit only
the block of the failed page. For networks that do not feature
selective retransmissions, it may be beneficial to proactively
page-in all-pages upon the first page-fault (or even pre-touch
the buffers, as discussed in Section V), in order to avoid
multiple retransmissions of the entire transfer, which can occur
when multiple pages fail.

RDMA page fault at the destination: Figure 6 depicts how
PART handles a page fault at a destination address. The
RDMA Engine receives a network packet at the destination

I These page-faults are not triggered by processor load or store commands,
but by an asynchronous device memory access, or, in our case, by an RDMA
transfer.



and tries to write data to local memory using ARM’s AXI
memory interconnect. The corresponding AXI write request
has an (IO) virtual address which is translated by the SMMU
before accessing the local memory. As can be seen in the
Figure, the request generates a page fault, which triggers
an interrupt that is catched by the SMMU fault handler. In
parallel, an AXI negative acknowledgment (NACK) arrives
at the local RDMA Engine, which logs in a NI FIFO all the
necessary information needed in order to resolve the page fault
and to request from the sender later to retransmit the failed
block. When the AXI NACK arrives, a page-fault NACK is
sent immediately to the source RDMA Engine, that will cancel
the time-out retransmission.

As shown in Figure 6, in parallel, the page-fault handler
schedules a tasklet that will resolve the page fault. In general,
tasklets are preemptable and allow the interrupt handlers to
be released sooner, reducing the response time for other inter-
rupts. The tasklet starts by reading all entries in the NI FIFO,
and identifies unique pages that experienced page-faults—
a single page may correspond to multiple failed AXI-write
requests, and thus to multiple AXI-NACKSs registered in the
NI FIFO. For each unique failed page, the tasklet resolves the
page-fault, using get_user_pages () and put_page (),
as discussed previously, and then triggers an ERR to the
sender.

7. Explicit Re-Xmit Req (ERR) Lusr lib
1. RDMA pack : 2 VA
. packet | PoF 6. Tadsléllito
8. Block Re-Xmit handlerq_ E:e;age—in)
5a. PgFault NACK - INTPT
< . PgFault

b. SMMU
push

|
|
|
|
|
NI FIFO :
I
|
I
|

Programmable Logic IProcessing System

Fig. 6: Handling an RDMA page fault at the destination
address.

RDMA page fault at the source: An RDMA page fault at
the source address (buffer) is triggered during a local (AXI)
read access to memory. Page faults at the source buffer during
an RDMA transfer are not expected to be as common as
page faults at the destination buffer. Because of that, in our
current implementation, page faults at the source addresses are
recovered after the expiration of a time-out period. This gives
our page fault handling mechanism a sufficient time window
to solve the page fault, using the same mechanisms as with
page-faults at the destination.

V. PERFORMANCE EVALUATION

In this section, we evaluate PART using microbenchmarks
and a real HPC application. In Table I, we see all the
acronyms/types of measurement and their definition, that will

be used for the rest of the paper. Our testbed consists of blades,
also named Mezzanines, each embedding four (4) Quad-FPGA
Daughter Boards (QFDBs), first shown in Figure 3. Each
QFDB consists of 4 Xilinx Zynq MPSoCs, 64GB of DDR4
SDRAM (16GB per MPSoC), and High Speed Serial (HSS)
links for external connections. The MPSoCs inside the QFDB
are connected in an all-to-all fashion using 17 Gb/s HSS links.
Inside the blade, the QFDBs are connected in an all-to-all
fashion using 10 Gb/s HSS links. The latency of each hop in
our prototype is approximately 150 nsecs, and the base (min)
latency of RDMA operations is around 4 psecs.

Every experiment is repeated between 5 and 50 times;
unless otherwise noted, we report the average of the individ-
ual measurements. Measurements were conducted using soft-
ware profiling; for userspace we used clock_gettime() (with
CLOCK_MONOTONIC configuration) and for kernelspace
we used ktime_get().

TABLE I: Description of methods

Transfer-Only
Touch-NoPres-Pg(s)

No page fault

Pre-touch all pages (prior to
transfer) for the first time (mi-
nor CPU page fault)
Pre-touch all pages that are
already in memory (no page
fault)

Upon network page fault,
page-in only one page

Upon network page fault,
page-in up to block-size num-
ber of pages

Upon network page fault,
page-in all remaining pages of
the transfer

Touch-Pres-Pg(s)

PIO (Page-In One-Page)

PI4 (Page-In 4-Pages)

PIA (Page-In All-Pages)

Ideal execution of an RDMA transfer: In Figure 7, we depict
the latency of RDMA writes for different message sizes. In
this experiment, no page fault occurs when we access memory
from the network. With Transfer-Only, we measure the user-
perceived latency of PART, when all pages are in memory. For
comparison, we also depict the user-perceived latency when
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Fig. 7: Latency of RDMA (no page fault).



pages are pinned before the transfer, using the mlock system
call. As can be seen, pinning adds 6 psecs for small transfers
(10 vs 4 psecs) and the overhead increases with the transfer
size, i.e. with the number of pages pinned, nearly doubling the
latency of the operation.

Figure 7 also depicts the overhead of touching pages instead
of pinning them. To account for this, we include in our
measurements the latency of the user process or the runtime
reading and writing the first byte from each page prior to
transfer. Pages can either be not-present in memory, e.g. first
access to a buffer (Touch-NoPres), or they might already reside
in memory (Touch-Pres). The user/runtime cannot know the
state of each page without system calls. Thus, touching pre-
faults the buffers that are not resident in memory, without
pinning them, while invoking the kernel only on these (faulty)
pages.

Touch-NoPres, similarly to Pin, exhibits an internal minor
page fault on each page. As can be seen, for small transfers the
overhead of Touch-NoPres is less than that of Pin (3 vs 6 usecs
overhead), but the latency of these methods converge for larger
sizes. On the other hand, the overhead of touching a page
already in memory is around 100 nsecs, thus Touch-Pres nearly
overlaps with Transfer-Only. However, for larger transfers, the
overhead is considerable, reaching approximately 20 psecs and
152 psecs for IMB and 4MB transfers, respectively, in our
measurements.

The added latency of touching pages before RDMA trans-
fers becomes increasingly important in asynchronous transfers,
such as MPI_Isend. The touch operation can delay such
asynchronous calls and keep a CPU core busy for many 10s
of usecs (in large transfers), which is clearly undesired.

Touching pages is orthogonal to PART, and in certain cases,
it can complement PART. When used alone, touching cannot
guarantee that no page-fault will occur during the transfer.
Occasional page-faults on accesses coming from the network
may still occur if the working set does not fit in memory or
when the OS re-allocates pages (e.g. using Transparent Huge
Pages). But, as we discuss later, we can combine touch with
PART, especially for small, synchronous transfers.

Overhead of network-induced page-faults: Inevitably, a
page fault during an RDMA transfer leads to an overhead
because it is handled by the operating system that needs to
update the page table. In Figure 8, we present the breakdown
of latency of a 4KB RDMA write transfer that experiences
a minor page fault at the destination. The first 4 usecs is
the latency that spans from the time that the user issues the
RDMA operation until the first packet reaches the destination.
The TLBs of the SMMU will then experience a miss, and
the PTW will also fail, since the translation may not find a
valid entry in the page table’. The page fault then invokes the
interrupt handler of the SMMU (1 psec in our measurements),
which schedules the tasklet that will resolve the page fault.
The tasklet is the most time-consuming component of our

2The breakdown does not include these operations, since they contribute a
few hundreds of nanoseconds to the overall latency.

breakdown (19 usecs to resolve one translation fault): it reads
the page fault information of all entries in the NI FIFO (up
to 16 read commands in our setup), pages-in the faulty pages,
and communicates this information to userspace using Netlink
sockets. After that, an ERR is issued from user-space to the
initiator, which adds 1 psec latency. Finally, retransmitting the
missing page adds 6 usecs, for a total latency of 31 usecs.

1st pck Interrupt Req2

transfer handler Tasklet Re-Xmit  Re-Xmit
......................... {>|<}{>|<}
4 psec 1 psec 19 psec 1 psec 6 psec

Fig. 8: Breakdown for a 4KB RDMA Write transfer with
page fault at destination.

In Figure 9, we measured the latency of small transfers that
incur a page fault at the destination. We examine two different
methods to trigger the retransmission: first using ERRs (Ex-
plicit Retransmission Requests), and, second, waiting for the
source RDMA Engine to time-out (100 usecs and 1 msec). As
can be seen in Figure 9, when using ERRs the total latency
of the 4KB RDMA Write transfer is approximately 38 usecs,
i.e. 7 psecs higher than what we measured in our breakdown.
We believe that this discrepancy is mostly due to context
switches, the overhead of which is not included in Figure 8.
Furthermore, Figure 9 shows that the latency is similar for
transfers up to 4KB, and that ERR is much more efficient
than waiting for the time-out. Nevertheless, RDMA Engines
that do not support ERR can resort to time-outs in order to
handle occasional page faults.

mmw Transf. incl. ERR
B Transf. incl. TOut 100 usec

@z Transf. incl. TOut 1 msec

1000

- log

100
36

Latency (usec)

64 256 1K 4K
Transfer Size (Bytes)

Fig. 9: Latency of RDMA with page fault at destination
for different retransmission methods.

Proactively paging ahead upon page-fault: In Figure 10, we
examine the latency of large RDMA transfers, in the extreme
case with page fault on all pages. For comparison, we also
include configurations from Figure 8, with no network page-
faults, but now the tests extend for up to IMB transfers.

Page-in 1-Pg (PIO) presents the latency of the transfer when
PART handles every page-fault independently. As mentioned
in Section III, our RDMA Engine splits every transfer into
blocks of 16KB (4 pages of 4KB), and selectively retransmits
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Fig. 10: Latency of an RDMA transfer with page faults in
all destination pages.

entire blocks. In Figure 10 we also evaluate “Page-in 4-
Pgs” (PI4), which, in every page-fault, pages in 4 pages that
belong to the same block, proactively resolving all possible
page-faults in that block with one retransmission. As can be
seen, PI4 does not improve performance significantly. This
can be explained because PIO triggers retransmissions faster,
and because of the overlap among the operations that handle
different pages in the same block; thus, even with PIO,
all pages in a block can be present in memory when the
retransmitted block arrives.

Going one step further, we also examine “Page-in All-Pgs”
(PIA), an optimization of PART that proactively pages in all
(forthcoming) pages of a transfer upon the first page fault.
This scheme reduces the overheads and the latency especially
for large transfers. Compared to PIO, proactively touching
all pages presents the same latency for transfer sizes up to
64KB (16 pages). However, for larger transfers, the benefits
become huge. PIA minimizes the number of retransmissions
(1 block for the entire transfer), since all subsequent blocks
of the transfer will succeed (pages will reside in memory).

The performance of PIA is worse than “Touch NoPres-
Pgs”. More precisely, as can be seen in Figure 10, for IMB
transfers, PIA is 2.6x worse than “Transfer-Only”, whereas
“Touch NoPres-Pgs” is 2x worse. Comparing the two, PIA is
approximately 1.2x worse than “Touch NoPres-Pgs” for IMB
transfers and 3.5x for 64KB transfers. Both methods incur the
latency of paging-in all pages (i.e. normal CPU MMU minor
page faults), but PART does that from the tasklet, which can be
interrupted multiple times due to SMMU handler invocations.
On the other hand, as mentioned earlier, PART touches the
pages dynamically, whereas ‘“Touch NoPres-Pgs” introduces
a static overhead on all transfers, which is especially bad in
large, asynchronous transfers.

Pre-touching pages of small transfers with PART: The
aforementioned results indicate that it may be beneficial to
touch the buffers of small transfers (e.g. less than 64 or
256KB) before they are RDMAed, when the user can know
that this is the first use of the buffer. In this way, we reduce

the latency by as much as 3.2x in case page faults occur prior
to the transfer, while increasing the latency marginally if no
page-fault occurs (touching a page already in memory incurs
around 100-200 nsecs of overhead).
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Fig. 11: Latency versus page fault frequency in 1MB

transfers.

Impact of page fault frequency: In Figure 11, we evaluate
the performance of PART versus the page fault frequency in
IMB transfers. The page fault frequency presents the proba-
bility that a page will exhibit a page fault, taken independently
for each page. With page-fault frequency 0%, we capture the
no page fault case. As can be seen in the Figure (left y-
axis), for 5%, 20%, 40%, 80% and 100% page-fault frequency,
the latency of PIO is 1.3, 2.2, 3.6, 5.7, and 6.7x, higher,
respectively, than that of PIA.

Focusing on how PIA slowdowns the base transfer latency
(0% frequency) in the presence of page-faults (right y-axis),
we see that, as expected, the slowdown increases with page-
fault frequency: 1.15x for up to 5%, 1.56x for 40%, and 2.6x
for 100%. Thus, when the frequency of page faults is small,
transfers will incur a small latency overhead.

Evaluating PART in a real HPC application: We evaluated
PART by running the LAMMPS HPC application [16] on
our testbed. In our experiments we compare PART, which
dynamically handles all page-faults, versus a solution that
touches all buffers prior to transfer, thus leading to no page
faults (Transparent Huge Pages were disabled). The results
depicted in Table II use four (4) threads per process—each
QFDB consists of four (4) FPGAs and each one of them,
running a process, has four (4) ARM A53 cores. The switches
that support the connections are described in [17]-[19]. In our
experiments, we varied how many processes (thus FPGAs)
participated in the run, ranging from 1 up to 16 (16 FPGAs/1
blade).

As can be seen in Table II, the main principle of PART,
i.e. not pinning pages and handling page-faults at the network
through retransmissions, does not introduce any measurable
overhead in LAMMPS. Analyzing the results, we discovered
that a few only network-induced page-faults occurred at the be-
ginning of the experiments. This happens because LAMMPS
reuses its buffers that participate in communication. In PART,



TABLE II: LAMMPS performance (up to 1600 steps) using
PART versus another method that pages-in all the pages of the
buffers prior to the RDMA transfer.

Processes Loop time (sec)  Timesteps/s
1 76.2046 1.312
‘ 2 79.1183 2.528
No Page Faults 4 84.2753 4746
16 97.1399 16.471
1 76.1135 1.314
) 2 79.0789 2.529
With Page Faults 4 84.1988 4.751
16 96.7787 16.533

the user does not have to pre-fault (touch or pin) pages prior
their RDMA transfer, thus simplifying MPI programming; ad-
ditionally, PART improves memory utilization, since programs
can dynamically share the available memory. In future work,
we want to evaluate the performance of PART with multiple
programs.

VI. CONCLUSION

In this paper, we proposed and evaluated PART, a new end-
to-end memory management scheme for RDMA. Instead of
pinning pages, PART resolves occasional page faults in the
network, leveraging the retransmission capabilities of modern
NICs. Additionally, PART re-uses the existing IOMMU and
the process page table in order to translate virtual to physical
addresses, instead of deploying a separate memory manage-
ment framework as modern NICs. Avoiding page pinning sim-
plifies programming and unlocks the advantages of dynamic
paging for communication buffers. We have implemented both
the hardware and software components of PART in a real
RDMA network connecting low-power ARM processors. Our
results showed that PART (i) can significantly reduce the
latency compared to pinning for small transfers when no page
fault incurs, (ii) introduces small overheads for IMB transfers
(up to 1.1x higher transfer time) when a small percentage (up
to 5%) of pages incur a fault and (iii) up to 2.6x when all
pages incur a page-fault. We also evaluated a heuristic that
touches buffers prior to the transfer, which can be combined
with PART, especially for small, synchronous transfers. Our
experiments with a real HPC application further showed that
PART does not affect the application execution time.
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