
“MINOS*: Distributed Consistency and Persistency Protocol
Implementation & Offloading to SmartNICs”

Antonis Psistakis, Fabien Chaix❖, and Josep Torrellas
University of Illinois Urbana-Champaign, USA

❖FORTH, Greece
{psistaki, torrella}@illinois.edu, chaix@ics.forth.gr

Edinburgh, Scotland
March 5th, 2024

30th IEEE International Symposium on High-Performance Computer Architecture (HPCA 2024)

*MINOS: King of Crete island (greek mythology)

Introduction
• Datacenters focus

• Performance (latency and tput)
• Availability
• Reliability

To achieve the above:
• Replicate data across Distributed Datastores
• Persistency

Distributed Datastore
X X X X

NVM NVM NVM NVM

2

Leaderless distributed systems: All participating nodes can process any
client request

Introduction

👍 Performance
👎 Programming complexity, Recovery

WR
L

1

L

2

L

3

Key: 0

WR
L

L

1

2

L

3

Key: 0

3

• Consistency Model: When updates become visible (replicated) to all nodes

• Persistency Model: When updates are persisted to non-volatile memory (NVM)

Background: Definitions

• Linearizable (Lin): A client write must update all the replica nodes in the system
before it completes.

Persistency Model* When is an update persisted in a node’s NVM?
Synchronous (Synch) When the local volatile memory is updated

Read-Enforced (REnf) Before the value updated is read

Scope At the end of the scope

Eventual (Event) Sometime in the future

* Kokolis et al., “Distributed Data Persistency”, MICRO 2021 4

• Type of Nodes

• Coordinator: The node that receives the client request

• Follower: The nodes with replicas. Need to participate in the update

• Type of Messages*

Background: Definitions

Message

Invalidation (INV)

Acknowledgement (ACK)

Validation (VAL)

* Katsarakis et al., “Hermes: A Fast, Fault Tolerant and Linearizable Replication Protocol”, ASPLOS 2020 5

ACK

VAL

Update Mem
INV (+data)

RD
Return

RD
Stall

RD

FollowerCoordinator

INV (+data)

WR

ACK

VALEND

WR
latency

Update Mem

Ti
m

e
Background: DDP <Lin, Synch> Example

6

1. Novel algorithms for real-system implementation of a Leaderless system,

supporting various consistency and persistency models (MINOS-B)

Contributions

2. New architecture that offloads the models into SmartNICs (MINOS-O)

7

Contribution: MINOS-Baseline (MINOS-B)

• Set of novel leaderless algorithms that efficiently implement consistency and

persistency (DDP) models

• MINOS-B relies on three elements to support concurrent and conflicting writes:

A. Logical Timestamps & Obsolete Writes

B. Lock Types

C. Lock Ownership
Logical TS & Obsolete WRs

A

Lock Types

B

Logical TS & Obsolete WRs
A

Lock
Ownership

C

Lock Types

B

Logical TS & Obsolete WRs
A

8

MINOS-B: Logical Timestamps & Obsolete Writes

Logical Timestamps

• Used to maintain order of requests

• Each write operation carries its own timestamp

Obsolete Writes

• Write that reaches a node and the record is already updated by a later update

• Returns immediately to the sender without updating record

9

MINOS-B: Lock Types
Naïve approach: Use plain Locks

LOCK

LOCK

LOCK

UNLOCK

UNLOCK

UNLOCK

Coordinator Follower 1 Follower 2

INV

Update Mem

Update Mem
Update MemPersist

Persist
Persist

ACK

VAL

WR

Return
WR

10

MINOS-B: Lock Types
What really needs lock protection?

1. Prevent reads on records currently
being written
• Scope: Client Write

2. Prevent concurrent writes on the
same record
• Scope: Local Write *

* Note: Persist is done atomically in a REDO log, okay to be re-ordered

Coordinator Follower 1 Follower 2

INV

Update Mem

Update Mem Update MemPersist

Persist PersistACK

VAL

LOCK

UNLOCK

LOCK

UNLOCK

UNLOCK

LOCK

Return
WR

WR

11

MINOS-B: Lock Types

12

Our Approach

1. Prevent reads on records currently being written
• Scope: Client Write

2. Prevent concurrent writes on the same record
• Scope: Local Write

RDLOCK

RDUNLOCK

RDLOCK

RDUNLOCK

RDUNLOCK

RDLOCK

WRLOCK

WRUNLOCK WRLOCK

WRUNLOCK WRUNLOCK

WRLOCK

Optimization: Snatching Read-Lock ownership

Coordinator Follower 1 Follower 2

INV

Update Mem

Update Mem Update MemPersist

Persist PersistACK

VAL
Return
WR

WR

RDLOCK

WRLOCK

Volatile
State

NODE 3 KEY 0

MINOS-B: Read-Lock Ownership Example

13

Coordinator Coordinator Follower
Node 1 Node 3

ACK2
ACK1

WR2: RDUNLOCK

WR1: RDLOCK
WR2: Snatch RDLOCK

VAL1
VAL2

INV1
INV2

WR1: RDUNLOCK? (no)

WR2: WRLOCK
WR2: Update Mem
WR2: WRUNLOCK
WR2: Persist

<WR2>

0

Node 2

WR1
Key: 0
TS: 0

WR2Key: 0
TS: 1

<null>

MINOS-B: Full <Lin, Synch> Algorithm

Return
Write

INV

VAL

VAL

ACK ACK

INV

VAL

VAL

Coordinator
Host NIC HostNIC

Follower

Spin for all ACKs d12.

If INVs sent: Send VALs e15.

INV

ACKACK

INV

RDLock
unlock

If RDLock_Owner(k) == Me:
 RDUnlock(k)

13.

14.

 Update Mem 8. WRLock
unlockWRUnlock(k)9.

RDLock
lock

WRLock
lock

Process new WR for key k
If Obsolete(TSWR):

1.

2.

3.

4.

5.

Snatch RDLock(k)
// RDLock is set.
// This thread may be the RDLock Owner.
WRLock(k)
// This thread can perform a local-write.

Exit

If updated Mem: Persist to NVM25.

RDLock
unlock

If RDLock_Owner(k) == Me:
 RDUnlock(k)

28.

29.

Process new VAL for key k j27.

 Update Mem h23.

WRLock
unlock

WRUnlock(k)

Send ACK i26.

Write

RDLock
lock
WRLock
lock

If Obsolete(TSWR):

Exit
Snatch RDLock(k)
WRLock(k)

 Send ACK

Process new INV for key k f
17.

18.

19.

21.

g

20.

16.

22. If !Obsolete(TSWR):

 Send INVs a7.

6. If !Obsolete(TSWR):

24.

< Not applicable > k30.

10. If INVs sent: b
11. Persist to NVM c

14

Sources of Overhead

MINOS-B <Lin, Synch> Algorithm

Coordinator Follower
HostNIC

INV

ACK

RDLock
lock

VAL

Host NIC
Write

RDLock
lock

INV

ACK

Return
Write

VAL

Read

Return
Read

ACK

VAL

WRLock
lock

WRLock
unlock

RDLock
unlock

INV

WRLock
lock
WRLock
unlock

RDLock
unlock

VAL

ACK

INV

• Same msg sent to multiple
receivers one-by-one

• Heavy involvement of the
Follower CPUs

• Expensive PCIe crossings

• Software overhead of
concurrency control

15

Contribution: MINOS-Offload (MINOS-O)
Idea: Offload consistency and persistency operations to SmartNICs

SmartNIC enhancements:

1. Equipped with both volatile- and non-volatile

memories

2. Metadata is cache-coherent with host CPU

3. Batching of messages between Host ⇔ SmartNIC

4. Broadcast support

MINOS SmartNIC

Interface to Host

L2 $

core core

L2 $

core core

L2 $

core core

L2 $

core core

DDR
Mem

.

NVM

dFIFO

L3
$

Interface to Network

Network

vFIFO

Host

Message Broadcast
Module

Selective Coherence
Module

16

1. Batched Messages + Broadcast

MINOS-O Features

MINOS-B <Lin, Synch> Algorithm

Coordinator Follower
HostNIC

INV

ACK

RDLock
lock

VAL

Host NIC
Write

RDLock
lock

INV

ACK

Return
Write

VAL

Read

Return
Read

ACK

VAL

WRLock
lock

WRLock
unlock

RDLock
unlock

INV

WRLock
lock
WRLock
unlock

RDLock
unlock

VAL

ACK

INV

MINOS-O <Lin, Synch> Algorithm

Coordinator Follower
HostSNIC

Read
INV

ACK

RDLock
lock

Enq to
FIFOs

VAL

RDLock
unlock

Return
Read

Host SNIC
Write

RDLock
lock

Batched
INV

bcast
INV

ACK

Batched
ACK

Return
Write

bcast
VAL

RDLock
unlock

Enq to
FIFOs

17

1. Batched Messages + Broadcast2. Offload models to SmartNIC

MINOS-O Features

MINOS-B <Lin, Synch> Algorithm

Coordinator Follower
HostNIC

INV

ACK

RDLock
lock

VAL

Host NIC
Write

RDLock
lock

INV

ACK

Return
Write

VAL

Read

Return
Read

ACK

VAL

WRLock
lock

WRLock
unlock

RDLock
unlock

INV

WRLock
lock
WRLock
unlock

RDLock
unlock

VAL

ACK

INV

MINOS-O <Lin, Synch> Algorithm

Coordinator Follower
HostSNIC

Read
INV

ACK

RDLock
lock

Enq to
FIFOs

VAL

RDLock
unlock

Return
Read

Host SNIC
Write

RDLock
lock

Batched
INV

bcast
INV

ACK

Batched
ACK

Return
Write

bcast
VAL

RDLock
unlock

Enq to
FIFOs

18

1. Batched Messages + Broadcast2. Offload models to SmartNIC3. No Follower Host CPU Involvement

MINOS-O Features

MINOS-B <Lin, Synch> Algorithm

Coordinator Follower
HostNIC

INV

ACK

RDLock
lock

VAL

Host NIC
Write

RDLock
lock

INV

ACK

Return
Write

VAL

Read

Return
Read

ACK

VAL

WRLock
lock

WRLock
unlock

RDLock
unlock

INV

WRLock
lock
WRLock
unlock

RDLock
unlock

VAL

ACK

INV

MINOS-O <Lin, Synch> Algorithm

Coordinator Follower
HostSNIC

Read
INV

ACK

RDLock
lock

Enq to
FIFOs

VAL

RDLock
unlock

Return
Read

Host SNIC
Write

RDLock
lock

Batched
INV

bcast
INV

ACK

Batched
ACK

Return
Write

bcast
VAL

RDLock
unlock

Enq to
FIFOs

19

1. Batched Messages + Broadcast4. Metadata Coherence

MINOS-O Features

MINOS-B <Lin, Synch> Algorithm

Coordinator Follower
HostNIC

INV

ACK

RDLock
lock

VAL

Host NIC
Write

RDLock
lock

INV

ACK

Return
Write

VAL

Read

Return
Read

ACK

VAL

WRLock
lock

WRLock
unlock

RDLock
unlock

INV

WRLock
lock
WRLock
unlock

RDLock
unlock

VAL

ACK

INV

MINOS-O <Lin, Synch> Algorithm

Coordinator Follower
HostSNIC

Read
INV

ACK

RDLock
lock

Enq to
FIFOs

VAL

RDLock
unlock

Return
Read

Host SNIC
Write

RDLock
lock

Batched
INV

bcast
INV

ACK

Batched
ACK

Return
Write

bcast
VAL

RDLock
unlock

Enq to
FIFOs

20

Methodology

Simulated System
• 2-16 nodes, 5 cores each (2.1 GHz)
• SmartNIC with 8 cores at 2GHz

Benchmarks
• Microbenchmark: YCSB
• Macrobenchmark: DeathStar Benchmark*

* Gan et al., “An Open-Source Benchmark Suite for Microservices and Their Hardware-Software
Implications for Cloud & Edge Systems”, ASPLOS19 21

Evaluation: Read Scalability

MINOS-O reduces read latency by 3.1x on average

of
nodes

22

Conclusion
• MINOS-Baseline (MINOS-B): set of new algorithms for efficient implementation

of leaderless consistency and persistency models

• MINOS-Offload (MINOS-O): offloads MINOS-B algorithms to SmartNICs
• 2.7x average latency reduction over MINOS-B

• 2.4x average throughput increase over MINOS-B

• End-to-end microservice average latency: 35% reduction over MINOS-B

23

“MINOS: Distributed Consistency and Persistency Protocol
Implementation & Offloading to SmartNICs”

Antonis Psistakis, Fabien Chaix❖, and Josep Torrellas
University of Illinois Urbana-Champaign, USA

❖FORTH, Greece
{psistaki, torrella}@illinois.edu, chaix@ics.forth.gr

Edinburgh, Scotland
March 5th, 2024

30th IEEE International Symposium on High-Performance Computer Architecture (HPCA 2024)

Scan to read our paper

Thank you!

